Bayesian variable selection and regularization for time–frequency surface estimation

نویسندگان

  • Patrick J. Wolfe
  • Simon J. Godsill
چکیده

We describe novel Bayesian models for time–frequency inverse modelling of nonstationary signals. These models are based on the idea of a Gabor regression, in which a time series is represented as a superposition of translated, modulated versions of a window function exhibiting good time–frequency concentration. As a necessary consequence, the resultant set of potential predictors is in general overcomplete—constituting a frame rather than a basis—and hence the resultant models require careful regularization through appropriate choices of variable selection schemes and prior distributions.We introduce prior specifications that are tailored to representative time series, and we develop effective Markov chain Monte Carlo methods for inference. To highlight the potential applications of such methods, we provide examples using two of the most distinctive time–frequency surfaces—speech and music signals—as well as standard test functions from the wavelet regression literature.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Variable Selection and Regularisation for Time- Frequency Surface Estimation

Here we describe novel Bayesian models for time-frequency analysis of nonstationary data. These models are based on the idea of a Gabor regression, in which a time series is represented as a superposition of time-frequency shifted versions of a simple window function whose essential support is well-localised in time and frequency. Specifically, we consider the case in which the set of potential...

متن کامل

spikeSlabGAM: Bayesian Variable Selection, Model Choice and Regularization for Generalized Additive Mixed Models in R

The R package spikeSlabGAM implements Bayesian variable selection, model choice, and regularized estimation in (geo-)additive mixed models for Gaussian, binomial, and Poisson responses. Its purpose is to (1) choose an appropriate subset of potential covariates and their interactions, (2) to determine whether linear or more flexible functional forms are required to model the effects of the respe...

متن کامل

Bayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias

A common strategy for sparse linear regression is to introduce regularization, which eliminates irrelevant features by letting the corresponding weights be zeros. However, regularization often shrinks the estimator for relevant features, which leads to incorrect feature selection. Motivated by the above-mentioned issue, we propose Bayesian masking (BM), a sparse estimation method which imposes ...

متن کامل

Hierarchical Bayesian Models for Regularization in Sequential Learning

We show that a hierarchical Bayesian modeling approach allows us to perform regularization in sequential learning. We identify three inference levels within this hierarchy: model selection, parameter estimation, and noise estimation. In environments where data arrive sequentially, techniques such as cross validation to achieve regularization or model selection are not possible. The Bayesian app...

متن کامل

Compression-Based Averaging of Selective Naive Bayes Classifiers

The naive Bayes classifier has proved to be very effective on many real data applications. Its performance usually benefits from an accurate estimation of univariate conditional probabilities and from variable selection. However, although variable selection is a desirable feature, it is prone to overfitting. In this paper, we introduce a Bayesian regularization technique to select the most prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003